Elliptic Curves and Fault Attacks
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Elliptic Curve Cryptography

m Invented [independently] by Neil Koblitz and Victor Miller in 1985

m Useful for key exchange, encryption and digital signature



Fault Attacks

m Adversary induces faults during the computation

m glitches (supply voltage or external clock)
m temperature
m light emission (white light or laser)
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This Talk

m Fault attacks and countermeasures for elliptic-curve cryptosystems
m cryptographic primitives vs. cryptographic protocols
m Most known fault attacks are directed to cryptographic primitives

m notable exception

skipping attacks [Schmidt and Herbst, 2008]
fault model experimentally validated

m List of research problems
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Basics on Elliptic Curves (1/3)

Definition
An elliptic curve over a field K is the set of points (x,y) € E

E:y?+aixy+asy = x> + a;x* + asx + ag

along with the point O at infinity

mCharK#23=a =a=a=0
m CharK = 2 (non-supersingular case) = a; =1,a3 = a4 =0

Fact
The set E(K) forms an additive group where
m O is the neutral element
m the group law is given by the “chord-and-tangent” rule
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Basics on Elliptic Curves (2/3)

E:y?+aixy + asy = x> + a;x* + asx + ag

mLetP = (xq,y1) and Q = (x2,¥2)
m Group law

mP+O0O=0+P=P

m —P= (x1,—y1 — a1 X1 —G3)

m P+ Q = (x3,y3) where

2
X3 =\ +a1\—a; — Xq — X2, y3:(X1 —X3)/\—y1—G1X3—G3

il £ [addition]
with A = ¢ 217X
3X7 + 2a2X1 + A4 — 1Y [doubling]
2y1 + aix1 + as
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Basics on Elliptic Curves (3/3)

m Elliptic curves over R

/

4-R

R

\

vy =x3—7x

P =(—2.35 —1.86),Q = (—0.1, 0.836) P =(2,2.65)
R =(3.89, —5.62) R =(1.11,2.64)
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EC Primitive

m EC primitive = point multiplication (a.k.a. scalar multiplication)
E(K) x Z — E(K), (P,d)— Q = [d]P

m one-way function

m Cryptographic elliptic curves
m K = Fq with g = p (a prime) or g = 2"
m #E(K) = hnwith h € {1,2,3,4} and n prime
m typical size: |n|; = 224 (= |K|;)

Definition (ECDL Problem)

Let G = (P) C E(K) a subgroup of prime order n
Given points P,Q € G, compute d such that Q = [d]P
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EC Digital Signature Algorithm (1/2)

m Elliptic curve variant of the Digital Signature Algorithm

m a.k.a. Digital Signature Standard - DSS
m included in IEEE P1363, ANSI X9.62, FIPS 186.2, SECG, and ISO 15946-2
m highest security level in the GM

m Domain parameters

m finite field Fy
m elliptic curve E/Fq with #E(FFq) = hn
cofactor h < 4 and n prime

m cryptographic hash function H
m point G € E of prime order n

{Fq,E,n,h,H,G}
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EC Digital Signature Algorithm (2/2)

m Key generation: Y = [d]|G with d & {1,...,n—1}
pk = {G,Y} and sk = {d}

m Signing
Input message m and private key sk
Output signature S = (r,s)

Kl pickarandomke {1,...,n—1}

compute T = [k]G and set r = x(T) (mod n)
if r = 0 then goto Step 1

compute s = (H(m) +dr)/k (mod n)

H return S=(r,s)

m Verification
Bl compute uy = H(m)/s (mod n) and u; = r/s (mod n)
compute T = [u1]G + [u.]Y
check whether r = x(T) (mod n)

te_chnico|or

ECRYPT Il Workshop on Physical Attacks - Graz, November 27-28, 2012 _ -



Public Key Validation

m For each received pk = {domain params, Y}, check that
HYcE

Y+O0
(optional) [n]Y =0
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EC Diffie-Hellman Key Exchange

m ECDH = Elliptic Curve Diffie-Hellman protocol
m elliptic curve variant of the Diffie-Hellman key exchange

Alice Bob
. Ry=[alG R,
Re Rg=[b]G b
KA = [G]RB KB = [b]RA

m cofactor variant:
Ki = [h]([a]Rs) and Kg = [h] ([b]Ra)

m suffers from the man-in-the-middle attack

no data-origin authentication
exchanged messages should be signed
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EC Menezes-Qu-Vanstone Protocol

m ECMQV = Elliptic Curve Menezes-Qu-Vanstone protocol
m implicit authentication

Alice Bob
{WA7 WA — [WA]G} {W37 WB — [WB]G}
a, Ry = [d]G R R4
R P b, Re = [b]G
Ssa =a+Raw, (mod n) ss = b+ Rgws (mod n)
Ka = [s4](Re + [Re]Ws) Kg = [s5](Ra + [Ra]Wa)

Notation: P := <X(P) mod 2‘”‘2/2) + 2Inl2/2 (£ 0)

m cofactor variant
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ECDH Augmented Encryption (1/2)

m ECIES = Elliptic Curve Integrated Encryption System

m proposed by Michel Abdalla, Mihir Bellare and Phillip Rogaway in 2000
m submitted to IEEE P1363a
m highest security level (IND-CCA2) in the GM/ROM
m Domain parameters
m finite field Fy
m elliptic curve E/Fq with #E(Fq) = hn
m “special” hash functions

message authentication code MACk(c)
key derivation function KD(T, ¢)

m symmetric encryption algorithm Enck(m)
m point G € E of prime order n

{Fq, E,n, h, MAC, KD, Enc, G}
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ECDH Augmented Encryption (2/2)

m Key generation: Y = [d|G with d & {1,...,n—1}
pk = {G,Y} and sk = {d}
m ECIES encryption
pick arandom k € {1,...,n— 1}
compute U = [k]|G and T = [k]Y
set (K1 HKz) = KD(T, l)
compute ¢ = Enck, (m) and r = MACx, (¢)
H return (U,c,r)

m ECIES decryption
Input ciphertext (U, c,r) and private key sk
Output plaintext mor L
E compute T' = [d|U
set (K;||K3) = KD(T", {)
if MACk (c) = r then return m = Enc,,' ()
1
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Fault Attacks on ECC

Bit-level vs. byte-level attacks
Transient vs. permanent faults
Private vs. public parameters
Unsigned vs. signed representations
Fixed vs. changing base point

Basic vs. provably secure systems
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Forcing-Bit Attack

mletd=>",d72
m Forcing bit: d; — 0

ECDSA > EcosA

m Check whether S = (r,s) is a valid signature
if so, then d; =0
if not, then d; =1

B (Similarly applies when k; — 0 in Step 4)

ECIES » ECIES

m Check the ciphertext validity

if the output is m then d; = 0
if the output is L then d; =1
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Flipping-Bit Attack

Against ECDSA » ECDSA

mletd=>,d2

m Flipping bit: d; — d;

$=(H(m) +dr)/k (mod n)
d=(dj—d))2 +d

m Define Uy = H(m)/5 (mod n) and U; = r/S (mod n)

m Compute T = [01]G + [(1]Y

mForj=0to/—1and o e {—1,1}, check if

= S = (r,8) with

o

X ('i'+ [J?r}6> =x([k]G) =r = d; —d;
= d;

1—0o
2
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Sign-Change Fault Attack

m Point inversion is inexpensive on elliptic curves
P=(xi,v1) = —P=(x1,—y1—a1x1—a)
m Signed-digit point multiplication algorithms are preferred for computing
Q = [d]P
m e.g., NAF-based method gives a speed-up factor of 11.11%

md=>,62 with§ e {0,1,—-1}

m Signed-digit encoding: §; = (sign bit, value bit),

0=(%0), 1=(0,1), —1=(1,1)

Sign-change fault attack (specialized flipping-bit attack)

Induce a fault in the sign bit of §;

m on the fly
m during exponent recoding
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Safe-Error Attack (1/2)

m Double-and-add-always algorithm
m additive variant of the square-and-multiply-always

Input: U,d = (d¢—1,...,do)2
Output: T = [d|U

n Ro<—o; R1 «~0
Fori=¢—1 downto O do
Ro < [2]Ro
b<—1—d,-;Rb<—Rb—|—U
Return Ry

m when b = 1, there is a dummy point addition
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Safe-Error Attack (2/2)

Against ECIES » ECIES

m Timely induce a fault into the ALU during the add operation at
iteration i

m Check the output

m if an invalid ciphertext is notified (i.e., L) then the error was effective
=di=1
m if the result is correct then the point addition was
dummy [safe error]
= d,' =0

m Re-iterate the attack for another value of i
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Errors in Public Routines

m Digital signatures are often used for authentication purposes
m e.g., only signed software can run on a given device

m Idea: inject a fault during the verification process

Public routines (parameters) should be checked for faults
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Random Errors Against EC Primitive

Attack model
m EC parameters are in non-volatile memory

m permanent faults in a unknown position,
in any system parameter
m transient fault during parameter transfer

Adversary’s goal
m Recover the value of d in the computation of Q = [d]P
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Key Observation (1/2)

E:y?+aixy + asy = x> + a;x* + asx + ag

mLet P = (x1,y1) and Q = (x2,¥2)
m P+ Q = (x3,y3) where

2
X3=A4+aqA—aQ — X1 —X2, V3=(X1 —X3)A— VY1 —a1X3 — 43

=% [addition]
X1 — X2

3x] + 2a;%1 + a4 — avy;
2y + a1xq + a3

with \ =
[doubling]

m Parameter agq is not involved in point addition (or
point doubling)
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Key Observation (2/2)

E:y?+aixy + asy = x> + a;x% + asx + ag

m If a ‘point’ P = (X,V) € Fq x Fq but [ ¢ E then the computation of
Q = [d]P will take place on the curve

E:v2+aixy+azy = x3 + ax? + aux + @

where dg = V2 + a1XV + a3y — X3 — apX? — asX
m Now if
(1] ordg(f’) = t is small
discrete logarithms are computable in <I3>

then
d (mod t)
can be recovered from Q
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Chosen Input Point Attack

m Construct a ‘point’ P; = (%;, ;) € E; such that
ordEi (13,-) = t; is small
discrete logarithms are computable in (I3i>
m Query the device with P; and receive Q; = [d]P;
m Solve the discrete logarithm and recover d (mod t;)

m Iterating the process gives

m d (mod t;) for several ¢;
m d by Chinese remaindering

(This attack can easily be prevented using the curve equation)
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Faults in the Base Point

Recover d in Q = [d]P on E i, : y* = X> + a4X + Qe

m Fault: P = (x1,y1) = P = (X,y1) € E
m Device outputs Q = [d]lAD

= [d](%1,v1) = (Rq4,Vq) € E
= 8¢ = V5 — )?f} — asXq (mod p)

m % is a root in F,[X] of X3 + asX + ds — y2
m Compute d (mod t) from @ = [d]P

m Similar attack when the y-coordinate of P is corrupted
m More assumptions are needed when both coordinates are corrupted
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Faults in the Definition Field

Recover d in Q = [d]P on E i, : y* = X> + a4X + Q6

m Fault: p — p
m Device outputs Q = [d]P with P = (X, ;) and
X1 = x4 (mod p) and y; =y; (mod p)

m Q- [d] (%1, y1) = (X4, ¥q) € E
= 06 = V3 —xf, — A4Xg = V2 — X3 — asXy (mod p)

m p divides (§3 — X3 — asXq) — (V3 — X3 — asXy)
m Compute d (mod t) from @ = [d]l3

m Case where p is a Mersenne prime; i.e., p = 2™ 4+ 2t 4+ 1
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Faults in the Curve Parameters

Recover d in Q = [d]P on E i, : y* = X> + a4X + Qe

m Fault: a; — a4
m Device outputs Q = [d]P on E : y? = x3 4 a4x + G
m Q= [d)(x1,y1) = (%a,Va) € E
m Two equations:
y12 = X? + G4X1 + G4
9(21 = )?3 =F 614)“(d + Qg
:>€14:...,("16:...
m Compute d (mod t) from @ = [d]P
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Skipping Attack

Attack assumes that the attacker manages to skip a doubling operation
m can be seen as a random error at the bit level

Algorithm 1 Double-and-add

Input: G, k= (kj_1,...,ko)2
Output: Q = [K]G

1: Ry + O; Ry — G

2: fori=/¢—1down toOdo
3: Ry + [Z]Ro
4
5

if ki = 1 then Ry <+ Rg + R4
: return Ry
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Application to ECDSA

m doubling skipped at iteration j
m T —~ T where Algorithm 2 Double-and-add
- ; Input: G, k = (ki—1,...,ko)2
- it o Output: T = [K]G
T—,_ijlz W*;“"Z]G : Ro ¢ O; Ry + G
’—11+ ) = 2: fori=/¢—1down to 0 do
= [§]<T S [k]G) 3: Ro < [2]Ro
- 4: if ki =1 then Ry + Ro + Ry
with k = (kj, ..., ko)2 5: return Ro
m (r,s)~ (F,3)
Observation:

[04]G + [G2]Y = [P)G + [L]Y =
[Mm)91G = [K]G

P = x([2)(T + [KIG)) (mod n) with T = [0]G + [d]Y — k= ..
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Countermeasures

m Algorithmic countermeasures

m memory checks, randomization, duplication, verification
m Shamir’s trick (redundancy)
m [rich] mathematical structure

m Basic vs. concrete systems
m Fixed vs. variable base point
m Infective computation

m BOS™ algorithm
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Basic Countermeasures

m Add CRC checks
m for private and public parameters
m Randomize the computation
m e.g., d < d+ rnwith n = ordg(P)
m Compute the operations twice
m doubles the running time
m Verify the signatures
m ECDSA verification is slower than signing
m Check that the output point Q = [K]P is in (P)
mQcE
m [h]Q # O (only implies of large order)
m Use the cofactor variants
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Multiplier Randomization (1/2)

m Scalar d should be randomized

m d* «+ d+ r+#E may not be a good solution
m security issue

Example (secp160k1)

p =2"60 _ 232 _ 538Dy [generalized] Mersenne prime
#E = 01 00000000 00000000 O001B8FA 16DFABOA CA16B6B31¢

=d* =d+r#E=(r);|dy¢---d;,_; || some bits
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Multiplier Randomization (2/2)

m Use splitting methods
m additive:
[d]P = [d — r]P + [r]P

m multiplicative:
[dIP = [dr~"](Ir]P)

Euclidean splitting
Write d = |d/r|r + (d mod r) for a random r

— [d]P = [d mod r]P + [|d/r]]([r]P)

Strauss-Shamir double ladder
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Preventing Fault Attacks: The Case of RSA

Shamir’s countermeasure

E Choose a (small) random integer r
Compute S* = m? mod rN and Z = m? mod r

If S* = Z (mod r) then output S = $* mod N,
otherwise return error

Giraud’s countermeasure

E Compute m“ mod N using Montgomery ladder and obtain the pair
(Z,S) = (m9~" mod N, m mod N)

If Zm =S (mod N) then output S,
otherwise return error
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Infective Computation

m Reminder:

m Decisional tests should be avoided
® Inducing a random fault in the status register flips the value of the zero

flag bit with a probability of 50%

Infective computation

Make the decisional tests implicit and “infect” the computation in case of
error detection

Example:
If (T[a] = b) then return a else error

= Return (T[a] — b)-r+a
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Edwards Curves

Em, 1 ax* +y* =1+ bx’y* where ab(a—b) #0

m Addition law
m O=(0,1) [neutral element]
B —(X,y1) = (—X1, 1)
m (X1,v1) + (X2,v2) = (X3,y3) where
X3 = X1Y2 + X2V1 - ViV — axixz
1+ bx1xy1V2’ 1 — bx1x2y1V2

m ... also valid for point doubling (and O)

m Addition law is complete if a is a square and b is a non-square
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Shamir’s Trick for Elliptic Curve Cryptosystems

P = (x1,v1) € Ep, : ax? +y* = 1+ bx2y?

m Let R = Z/prZ for a (small) random prime r
KB Compute
Epr < CRT(E, &) where & . 2 ax? +y? =1+ brx?y?
Q* « [d|P € &Epr(Z/prZ)
Y < [d]P € E(Fr)
If (Q* £Y (mod r)) then return error
Return Q* mod p

Idea #1
Let b, = (ax? + y? — 1)/(x2y?) mod r so that P, ;=P mod r € &

m ... but completeness is not guaranteed (and #&, is unknown)
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Shamir’s Trick for Elliptic Curve Cryptosystems

P = (X1,v1) € Ep, : ax? +y* = 1+ bx2y?

m Let R = Z/prZ for a (small) random prime r
B Compute

Q* « [dIP € Epr(Z/pri)

Y < [d (mod n/)|P- € & (Fy)
If (Q* £Y (mod r)) then return error
Return Q* mod p

Idea #2
Fix E.(F,) = (P) so that addition is complete
m ... but risnow a priori fixed and values must be pre-stored
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BOS* Algorithm

m Blomer, Otto, and Seifert (FDTC 2005)

Input: Peé&,d
Output: Q = [d]P
In memOI’yI {gr,Pr 6 gr, nr — #gr}

E Compute
H & < CRT(E,&) and P* < CRT(P,P))
Q* — [d]P* € &y = (Xpr, Vpr)
Y + [d (mod n,)]P. € & = (% vr)

Cx < 14+ Xpr — Xr (Mod r)

Cy < 1+ VYor —Vr (mod r)

For a k-bit random p, compute ~ <« LPCX'F(ZZIZ_p)Cy)J

Return Q = [7]Q* (mod p) € £
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Shamir’s Trick for Elliptic Curve Cryptosystems ?!

P = (X1,v1) € Ep, : ax? +y* = 1+ bx2y?

m Let R = Z/prZ for a (small) random prime r
B Compute
Epr <+ CRT(E,&) and P* « CRT(P,P.)
Q* <« [d|P* € &pr(Z/priZ)
Y < [d (mod n/)|Pr € E(Z)rZ)

If (Q* £Y (mod r)) then return error
Return Q* mod p

Idea #3 (27?)

Choose &-(Z/rZ) = (P;), so that (i) addition is complete, (ii) n, = #&; is
known, and (iii) no storage is required
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New Algorithm

&(2/q°Z) = {(aq,1) | a € Z/qZ}

m Properties
m &~ (2/q2)%, Py = (ag,1) = «

B #E=q
m [d]P1 = (dxq,1) where x; = aq

m Addition law is complete
X1Y2 + X1 ViV — aX1X;
X1, + (X y - )
1,1) + (. v2) (1 T bXiXay1V2 1—bX1X2y1y2)
whatever curve parameters a and b
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Summary

m Always use ECC standards (ECDSA, ECIES, ECMQV)

m Prefer the cofactor variants

m Protect private and public parameters
m perform memory checks

m Protect public routines

m Avoid decisional tests and make use of
infective computation

m Randomize the implementation
m Prefer the splitting methods
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Further Research: Attacks

Research Problem #1

© Mount fault attacks against randomized implementations of the EC
primitive (e.g., using LLL)

Research Problem #2

©© Mount practical fault-attacks against elliptic curve schemes (i.e.,
beyond the primitive)

Research Problem #3

2 Combine classical attacks with fault attacks (i.e., exploit the extra info
provided by the faults)
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Further Research: Designs

Research Problem #1

2 Improve the efficiency of computations (speed-wise or memory-wise)
and security — exploit the rich mathematical structure behind elliptic
curves

Research Problem #2

©© Explore scalar multiplication algorithms or design new ones having
invariants (as in Giraud’s proposal)

Research Problem #3
© Develop countermeasures against combined attacks in an efficient way
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More Information

Il Editors

Fault
Analysis in

Cryptography
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Comments/Questions?

https://research.technicolor.com/“MarcJoye
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