Challenges in Leakage-Resilient Symmetric Cryptography

Krzysztof Pietrzak

Institute of Science and Technology

ECRYPT II Workshop on Physical Attacks, Graz, November 28, 2012

(日) (문) (문) (문) (문)

Provable Security

Define "Breaking the Cryptosystem".

- 2 Construct Cryptosystem.
- Prove Cryptosystem Secure.

- ② Construct Cryptosystem.
- Prove Cryptosystem Secure.

- ② Construct Cryptosystem.
- Prove Cryptosystem Secure.

- ② Construct Cryptosystem.
- Prove Cryptosystem Secure.

- ② Construct Cryptosystem.
- Prove Cryptosystem Secure.

- ② Construct Cryptosystem.
- Prove Cryptosystem Secure.

- ② Construct Cryptosystem.
- Prove Cryptosystem Secure.

Provable Security

Define "Breaking the Cryptosystem".
 Example: Digital Signatures

 ${f
m I}$ breaks scheme if ${f
m P}$ is a valid signature for a new message.

- Onstruct Cryptosystem.
- Prove Cryptosystem Secure.

Provable Security

Define "Breaking the Cryptosystem".
 Example: Digital Signatures

 ${f
m I}$ breaks scheme if ${m
m \sc pm}$ is a valid signature for a new message.

- Onstruct Cryptosystem.
- Prove Cryptosystem Secure.

Theorem

No efficient adversary who breaks the scheme exists

lacksquare breaks scheme if $ar{B}$ is a valid signature for a new message.

- Onstruct Cryptosystem.
- Prove Cryptosystem Secure.

Theorem

No efficient adversary who breaks the scheme exists if (factoring, SVP,...) is hard.

• Provably secure cryptosystems get broken in practice.

-

- Provably secure cryptosystems get broken in practice.
- Problem: adversaries outside the anticipated model.

Krzysztof Pietrzak

Challenges in Leakage-ResilientSymmetric Cryptography

- Provably secure cryptosystems get broken in practice.
- Problem: adversaries outside the anticipated model.

Krzysztof Pietrzak

Challenges in Leakage-ResilientSymmetric Cryptography

Krzysztof Pietrzak Challenges in Leakage-ResilientSymmetric Cryptography

• E.g. can measure time to compute 🤛

- E.g. can measure time to compute
- breaks RSA on smart cards [Kocher'95]

- E.g. can measure time to compute
- breaks RSA on smart cards [Kocher'95]

Side-Channel Attack: Cryptanalytic attack exploring information leaked from a physical implementation of a cryptosystem. • power analysis

• probing attacks

cold-boot attacks

cache attacks

• radiation, sound, heat,...

- power analysis
 [Eisenbarth et al. CRYPTO'08]
 break wireless car keys
- probing attacks

- cold-boot attacks [Halderman et al. USENIX'08] break disc-encryption schemes
- cache attacks [Ristenpart et al. CCS'09] break cloud computing
- radiation, sound, heat,...

• Became major threat in the last few decades.

- Became major threat in the last few decades.
 - Ubiquitous computing: Light-weight crypto-devices are susceptible to side-channel attacks.

- Became major threat in the last few decades.
 - Ubiquitous computing: Light-weight crypto-devices are susceptible to side-channel attacks.
 - Provable security: Side-channels became the weakest link.

Side-channels are a physical phenomenon, how could theoretical cryptography be of help?

Side-channels are a physical phenomenon, how could theoretical cryptography be of help?

- Reductions in the context of side-channel attacks [MicRey'04]
- Construct schemes that remain provably secure in the presence of leakage.

Krzysztof Pietrzak Challenges in Leakage-ResilientSymmetric Cryptography

200

Krzysztof Pietrzak Challenges in Leakage-ResilientSymmetric Cryptography

Krzysztof Pietrzak Challenges in Leakage-ResilientSymmetric Cryptography

Krzysztof Pietrzak Challenges in Leakage-ResilientSymmetric Cryptography
Leakage models: one-time vs. continuous

- Most side-channels like timing, power, . . . are continuous. Notable exception cold-boot.
- Security against continuous leakage is *much* harder to achieve. E.g. requires key-refreshing.
- Intermediate "Floppy model".

Leakage models: dedicated vs. general

dedicated leakage functions

f models a particular side-channel timing: Make running time independent of input. probing: Private Circuits ([Ishai,Sahai,Wagner Crypto'03])

dedicated leakage functions

f models a particular side-channel timing: Make running time independent of input. probing: Private Circuits ([Ishai,Sahai,Wagner Crypto'03])

general leakage functions

bounded: f(key) has length $\ell \ll |key|$ bits.

entropic: Entropy of *key* decreases by at most ℓ given f(key).

auxiliary input: Computationally hard to compute key given f(key).

- 4 同 2 4 日 2 4 日 2

One-Time Bounded/Entropic leakage

 $key \in \{0,1\}^n$. Adv choses f and gets f(key).

- **O** Bounded leakage: f must satisfy $|f(key)| = \ell \ll n$.
- 2 Entropic leakage: f must satisfy $H_{\infty}(key|f(key)) \ge n \ell$.
 - Maurer's bounded storage model, privacy amplification,...
 - Intrusion resilience [Dzi'06,CDDLLW'07,...] (symmetric)
 - Memory attacks [AGV'09,NaoSeg'09,...] (public-key)

- *key*_i state after *i*'th invocation of the scheme.
- $key_i^+ \subseteq key_i$ touched in *i*'th invocation.

Before *i*'th invocation, Adv chooses f(.) with range $\{0, 1\}^{\ell}$ and gets

- $f(key_i^+)$ (Leakage-Resilient Cryptography [DziPie08],...)
- f(key_i) (Continuous Memory Attacks [DHLW12],...)

Public-key

Signatures: [AWD09, KV09, FKPR10, DHLW10, BKKV10, BSW11,...] Public key encryption: [AGV09, NS09, DHLW10, BKKV10, BSW11,...] Identity based encryption: [DHLW10, CDRW10, LRW11,...] Multiparty Computation: [FRRTV10, GR10, JV10,...] Zero Knowledge: [GJS11,...]

Secret-key

Stream-Ciphers: [DP08, Pie09, YSPY10, YS12,...]

Pseudorandom Functions/Permutations: [DP10, FPS11, MSJ12,...]

Compilers

[ISW03,FRRTV10,GolRot12,...]

伺 ト く ヨ ト く ヨ ト

Public-key

Signatures: [AWD09, KV09, FKPR10, DHLW10, BKKV10, BSW11,...] Public key encryption: [AGV09, NS09, DHLW10, BKKV10, BSW11,...] Identity based encryption: [DHLW10, CDRW10, LRW11,...] Multiparty Computation: [FRRTV10, GR10, JV10,...] Zero Knowledge: [GJS11,...]

Secret-key

Stream-Ciphers: [DP08, Pie09, YSPY10, YS12,...]

Pseudorandom Functions/Permutations: [DP10, FPS11, MSJ12,...]

Compilers

[ISW03,FRRTV10,GolRot12,...]

3 Principles

- Share Secret: Blinding
- Evolve Secret: Stream-Ciphers
- Hide Secret: For every *pk* many *sk* (HPS,Σ-Protocols)

Leakage-Resilient Stream-Ciphers

Krzysztof Pietrzak Challenges in Leakage-ResilientSymmetric Cryptography

weak PRFs

Definition Weak PRF

 $\mathcal{F}: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^m \text{ is a } (s,\epsilon,q) \text{ secure weak PRF}$ if no adversary of size s can distinguish the following distributions advantage ϵ

$$(X_1, Y_1), \ldots, (X_q, Y_q)$$
 $(X_1, Z_1), \ldots, (X_q, Z_q)$

where X_i, Z_i are uniform and $Y_i = \mathcal{F}(K, X_i)$ for a random K.

weak PRFs

Definition Weak PRF

 $\mathcal{F}: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^m \text{ is a } (s,\epsilon,q) \text{ secure weak PRF}$ if no adversary of size s can distinguish the following distributions advantage ϵ

$$(X_1, Y_1), \ldots, (X_q, Y_q)$$
 $(X_1, Z_1), \ldots, (X_q, Z_q)$

where X_i, Z_i are uniform and $Y_i = \mathcal{F}(K, X_i)$ for a random K.

Definition Min-Entropy

X has min entropy m if $\Pr[X = x] \le 2^{-m}$ for all x.

If $K \in \{0,1\}^k$ is uniform and $|f(K)| = \lambda$, then K has $k - \lambda$ bits min-entropy given f(K).

Definition (Stream-Cipher)

• A function $\mathcal{SC} : \{0,1\}^{\kappa} \to \{0,1\}^{n} \times \{0,1\}^{\kappa}$ is a stream-cipher if for random K_{0} the output Y_{1}, Y_{2}, \ldots (where $(K_{i}, Y_{i}) = \mathcal{SC}(K_{i-1})$) is pseudorandom

$$\begin{array}{c} K_0 \rightarrow \underbrace{\mathcal{SC}}_{V_1} \longrightarrow \underbrace{\mathcal{SC}}_{V_2} \longrightarrow \underbrace{\mathcal{SC}}_{V_3} \longrightarrow \underbrace{\mathcal{SC}}_{V_4} \longrightarrow \underbrace{\mathcal{SC}}_{$$

Definition (Stream-Cipher)

A function SC: {0,1}^κ → {0,1}ⁿ × {0,1}^κ is a stream-cipher if for random K₀ the output Y₁, Y₂,... (where (K_i, Y_i) = SC(K_{i-1})) is pseudorandom

Can use any pseudorandom generator F

- 4 回 ト - 4 回 ト

Definition (Stream-Cipher)

A function SC: {0,1}^κ → {0,1}ⁿ × {0,1}^κ is a stream-cipher if for random K₀ the output Y₁, Y₂,... (where (K_i, Y_i) = SC(K_{i-1})) is pseudorandom

$$\begin{array}{c} K_0 \longrightarrow F \longrightarrow K_1 \longrightarrow F \longrightarrow K_2 \longrightarrow F \longrightarrow K_3 \longrightarrow F \longrightarrow K_4 \\ \Lambda_1 & Y_1 & \Lambda_2 & Y_2 & \Lambda_3 & Y_3 & \Lambda_4 & Y_4 \end{array}$$

Can use any pseudorandom generator F

Definition (Stream-Cipher)

• A function $\mathcal{SC} : \{0,1\}^{\kappa} \to \{0,1\}^{n} \times \{0,1\}^{\kappa}$ is a stream-cipher if for random K_{0} the output Y_{1}, Y_{2}, \ldots (where $(K_{i}, Y_{i}) = \mathcal{SC}(K_{i-1})$) is pseudorandom

$$\begin{array}{c} K_0 \longrightarrow F \longrightarrow K_1 \longrightarrow F \longrightarrow K_2 \longrightarrow F \longrightarrow K_3 \longrightarrow F \longrightarrow K_4 \\ \Lambda_1 & Y_1 & \Lambda_2 & Y_2 & \Lambda_3 & Y_3 & \Lambda_4 & Y_4 \end{array}$$

Can use any pseudorandom generator F

But not leakage resilient even for $\lambda = 1$: For $t = |\mathbf{K}| + 1$, define

$$\Lambda_i = f(K_{i-1}) \stackrel{\text{def}}{=} i'th \ bit \ of \ K_t.$$

After t rounds leaked entire K_t .

 $\Lambda_1 = f(\mathbf{K_0}, \mathbf{Y_0})$

 $\Lambda_2 = f(\mathbf{K_1}, \mathbf{Y_1})$

 $\Lambda_1 = f(K_0, Y_0) \qquad \qquad \Lambda_3 = f(K_2, Y_2)$

 $\Lambda_1 = f(K_0, Y_0) \qquad \qquad \Lambda_3 = f(K_2, Y_2)$

Theorem ([P'09])

If F is a wPRF then the above is a leakage-resilient stream-cipher: Given Y_0, \ldots, Y_i and $\Lambda_1, \ldots, \Lambda_i$ the Y_{i+1}, Y_{i+2}, \ldots is pseudorandom.

 $\Lambda_1 = f(K_0, Y_0) \qquad \qquad \Lambda_3 = f(K_2, Y_2)$

Theorem ([P'09])

If F is a wPRF then the above is a leakage-resilient stream-cipher: Given Y_0, \ldots, Y_i and $\Lambda_1, \ldots, \Lambda_i$ the Y_{i+1}, Y_{i+2}, \ldots is pseudorandom.

• Leakage function $f(K_i, Y_i) \rightarrow \Lambda_i$ can't compute K_{i+2}, K_{i+3}, \ldots

Quantitative bound in [P'09] is nowhere practical.

 (s, ϵ) secure wPRF gave (s', ϵ') secure stream cipher where

$$\epsilon' \approx \epsilon^{1/12} \qquad s' \approx s \cdot \epsilon^2$$

As $\log(s/\epsilon) \leq$ key length, require wPRF with key length \gg 1000 to get meaningful bounds.

Quantitative bound in [P'09] is nowhere practical.

 (s,ϵ) secure wPRF gave (s',ϵ') secure stream cipher where

$$\epsilon' \approx \epsilon^{1/12} \qquad s' \approx s \cdot \epsilon^2$$

As $\log(s/\epsilon) \leq$ key length, require wPRF with key length \gg 1000 to get meaningful bounds.

With two recent results we can give a meaningful bound for keys of length 256.

- Overcoming weak expectations. [DodisYu 2012]
- How to fake auxiliary input. [JetchevP 2012]

Overcoming Weak Expectations

Theorem [DodisYu 2012] (improving [P'09])

If \mathcal{F} is a $(\epsilon, 2s, 2q)$ secure wPRF, then it is a

$$(\sqrt{2^{\lambda}\epsilon}, s, q)$$

secure wPRF if the key $K \in \{0, 1\}^k$ comes from any distribution with $k - \lambda$ bits of min-entropy.

Theorem [DodisYu 2012] (improving [P'09])

If \mathcal{F} is a $(\epsilon, 2s, 2q)$ secure wPRF, then it is a

$$(\sqrt{2^{\lambda}\epsilon}, s, q)$$

secure wPRF if the key $K \in \{0,1\}^k$ comes from any distribution with $k - \lambda$ bits of min-entropy.

Every weak PRF is one-time bounded leakage-resilient!

Every also holds for entropic leakage (if leakage function is efficient).

Theorem [JetchevP 2012]

• Consider any joint distribution $(X, A) \in \mathcal{X} \times \{0, 1\}^{\lambda}$.

Theorem [JetchevP 2012]

- Consider any joint distribution $(X, A) \in \mathcal{X} \times \{0, 1\}^{\lambda}$.
- Let ${\cal D}$ be a class distinguishers, say circuits of size $s=2^{80}$

Theorem [JetchevP 2012]

- Consider any joint distribution (X, A) ∈ X × {0,1}^λ.
- Let \mathcal{D} be a class distinguishers, say circuits of size $s = 2^{80}$
- There exists an efficient simulator h : X → {0,1}^λ that
 Fools every D in D

 $\forall D \in \mathcal{D} : |\Pr[D(X, A) = 1] - \Pr[D(X, h(X)) = 1]| \le \epsilon$

• *h* is of size $s \cdot 2^{3\lambda} / \epsilon^2$.

・ロト ・回ト ・ヨト ・ヨト

2

• Replace Λ_1 with "fake" $h(K_2, Y_1)$.

- Replace Λ_1 with "fake" $h(K_2, Y_1)$.
- Replace (Y_1, K_2) with uniformly random $(\tilde{Y}_1, \tilde{K}_2)$

- Replace Λ_1 with "fake" $h(K_2, Y_1)$.
- Replace $(Y_1, \underline{K_2})$ with uniformly random $(\tilde{Y}_1, \underline{\tilde{K}_2})$

• . . .

- Replace Λ_1 with "fake" $h(K_2, Y_1)$.
- Replace $(Y_1, \underline{K_2})$ with uniformly random $(\tilde{Y}_1, \underline{\tilde{K}_2})$
- . . .

- Replace Λ_1 with "fake" $h(K_2, Y_1)$.
- Replace $(Y_1, \underline{K_2})$ with uniformly random $(\tilde{Y}_1, \underline{\tilde{K}_2})$

• . . .

- Replace Λ_1 with "fake" $h(K_2, Y_1)$.
- Replace $(Y_1, \underline{K_2})$ with uniformly random $(\tilde{Y}_1, \underline{\tilde{K}_2})$
- . . .

- Replace Λ_1 with "fake" $h(K_2, Y_1)$.
- Replace $(Y_1, \underline{K_2})$ with uniformly random $(\tilde{Y}_1, \underline{\tilde{K}_2})$
- . . .

- Replace Λ_1 with "fake" $h(K_2, Y_1)$.
- Replace $(Y_1, \underline{K_2})$ with uniformly random $(\tilde{Y}_1, \underline{\tilde{K}_2})$

• . . .

- Replace Λ_1 with "fake" $h(K_2, Y_1)$.
- Replace $(Y_1, \underline{K_2})$ with uniformly random $(\tilde{Y}_1, \underline{\tilde{K}_2})$
- . . .

 λ : # of bits leaked per round. q : # of blocks output.

Lemma ([JetPie'12])

If F is a $(\epsilon_{F}, s_{F}, 2)$ -secure weak PRF the this is a $(\epsilon', s', q, \lambda)$ -secure leakage resilient stream cipher where

$$\epsilon' = 4q\sqrt{\epsilon_{\mathsf{F}}2^{\lambda}} \qquad s' = \Theta(1)\cdot rac{s_{\mathsf{F}}\epsilon'^2}{2^{3\lambda}}$$

$$q = 2^{20} , \ \lambda = 10 , \ \epsilon_{\mathsf{F}} = 2^{-100} , \ s_{\mathsf{F}} = 2^{154} \quad (s_{\mathsf{F}}/\epsilon_{\mathsf{F}} = 2^{256})$$

 $\epsilon' = 2^{-23} \qquad s' = 2^{78}$

Leakage-Resilient PRFs

→ Ξ →

э

GGM

イロン イロン イヨン イヨン

GGM + LR-SC

æ

- 4 聞 と 4 注 と 4 注 と

$GGM + LR-SC \Rightarrow LR-PRF$

|白子 | 田子 | 田子

- Granular Leakage.
- On-adaptive leakage.
- 1. & 2. allow static key!
- Inefficient construction.

Leakage-Resilient PRPs

- ₹ 🖹 🕨

Theorem ([LubyRackoff'88])

3-round Feistel instantiated with PRFs is a PRP.

Theorem ([LubyRackoff'88])

3-round Feistel instantiated with PRFs is a PRP.

Theorem ([LubyRackoff'88])

3-round Feistel instantiated with PRFs is a PRP.

Theorem ([HolensteinKuenzlerTessaro'11])

18-round Feistel instantiated with URFs is indifferentiable from a URP.

Theorem ([LubyRackoff'88])

3-round Feistel instantiated with PRFs is a PRP.

Theorem ([HolensteinKuenzlerTessaro'11])

18-round Feistel instantiated with URFs is indifferentiable from a URP.

Theorem ([DodisP'10])

r-round Feistel instantiated with leakage-resilient PRFs is a secure leakage-resilient super PRP for q-query distinguishers satisfying $q \leq 1.38^{r/2-1}$.

- 4 同 2 4 日 2 4 日 2

Side-Channel Attacks on Feistel

 Ψ_r : *r*-round Feistel instantiated with uniformly random functions $\{0,1\}^n \to \{0,1\}^n$.

Theorem ([DodisP'10])

Can invert Ψ_r on any value Y making $4n^r$ forward queries. If given $|Z_1|_1, \ldots, |Z_n|_1$ with every query.

Side-Channel Attacks on Feistel

 Ψ_r : *r*-round Feistel instantiated with uniformly random functions $\{0,1\}^n \to \{0,1\}^n$.

Theorem ([DodisP'10])

Can invert Ψ_r on any value Y making $4n^r$ forward queries. If given $|Z_1|_1, \ldots, |Z_n|_1$ with every query.

• Works for other leakages (than Hamming weight) of the Z_i's.

getting LR PRFs is hard what to do? Use algebraic PRFs, e.g. f(x) = g<sup>a₀ | 1_{x_i=1} a_i
 [NaorReingold'97]. Can use blinding to protect.
</sup>

- Use algebraic PRFs, e.g. f(x) = g<sup>a₀ ∏_{xi=1} a_i
 [NaorReingold'97]. Can use blinding to protect.
 </sup>
- Avoid PRFs! Use algebraic MACs [DodKilPieWic'12] like
 LaPiN

A Proposal: LaPiN [HeyKilLyuPaaP FSE'12]

$$\frac{\text{Ring}^{1} \quad \text{R} = \mathcal{F}_{2}[X]/(f)}{\underbrace{\frac{P \text{rover}}{\leftarrow}} \qquad \underbrace{\frac{V \text{erifier}}{}}_{\text{Random challenge } c \in \{0,1\}^{80}}$$

$$c \text{hose } r, e \in \mathbb{R}$$

$$z = r \cdot (k \cdot \pi(c) + \hat{k}) + e \in \mathbb{R} \xrightarrow{r,z} \hat{e} = z - r \cdot (k \cdot \pi(c) + \hat{k})$$
Accept if \hat{e} is a small element in ring R.

• Key are two ring elements k, \hat{k} (621 bits each)

• Share
$$k = k_0 \cdot k_1, \hat{k} = \hat{k}_0 \cdot \hat{k}_1$$

- Run protocol using (k_i, k̂_i) for i ∈ {0,1}, combine at the end.
- Occasionally refresh $k_0 \leftarrow k_0 \cdot z$, $k_1 \leftarrow k_1 \cdot z^{-1}$.

 $\frac{1}{1} f(X) = (X^{127} + X^8 + X^7 + X^3 + 1)(X^{126} + X^9 + X^6 + X^5 + 1)(X^{125} + X^9 + X^7 + X^4 + 1)(X^{122} + X^7 + X^4 + X^3 + 1)(X^{121} + X^8 + X^5 + X^1 + 1) + 1)$

Auxiliary Input Security?

Auxiliary Input vs Bounded Leakage: A Conjecture

Adversary gets Bounded Leakage: f(key), $|f(key)| \le \ell$.

Auxiliary Input: f(key), key is hard to compute given f(key).

Auxiliary Input vs Bounded Leakage: A Conjecture

Adversary gets Bounded Leakage: f(key), $|f(key)| \le \ell$. Auxiliary Input: f(key), key is hard to compute given f(key).

Is Aux. Input really stronger than bounded leakage in practice?

Does there exist a *natural* scheme that is secure against bounded leakage, but not auxiliary input (which does not trivially contradict the bounded leakage bound)?

Auxiliary Input vs Bounded Leakage: A Conjecture

Adversary gets Bounded Leakage: f(key), $|f(key)| \le \ell$. Auxiliary Input: f(key), key is hard to compute given f(key).

Is Aux. Input really stronger than bounded leakage in practice?

Does there exist a *natural* scheme that is secure against bounded leakage, but not auxiliary input (which does not trivially contradict the bounded leakage bound)?

RO analogy

Does there exist a *natural* scheme that is secure in the random oracle model, but not if the RO is replaced with, say SHA3.

Questions?

Krzysztof Pietrzak Challenges in Leakage-ResilientSymmetric Cryptography

/⊒ > < ∃ >